Double Ensemble Approaches to Predicting Firms' Credit Rating

نویسندگان

  • Jungeun Kwon
  • Keunho Choi
  • Yongmoo Suh
چکیده

Several rating agencies such as Standard & Poor's (S&P), Moody's and Fitch Ratings have evaluated firms’ credit rating. Since lots of fees are required by the agencies and sometimes the timely default risk of the firms is not reflected, it can be helpful for stakeholders if the credit ratings can be predicted before the agencies publish them. However, it is not easy to make an accurate prediction of credit rating since it covers a variety of range. Therefore, this study proposes two double ensemble approaches, 1) bagging-boosting and 2) boosting-bagging, to improve the prediction accuracy. To that end, we first conducted feature selection, using Chi-Square and Gain-Ratio attribute evaluators, with 3 classification algorithms (i.e., decision tree (DT), artificial neural network (ANN), and Naïve Bayesian (NB)) to select relevant features and a base classifier of ensemble models. And then, we integrated bagging and boosting methods by applying boosting method to bagging method (baggingboosting), and bagging method to boosting method (boosting-bagging). Finally, we compared the prediction accuracy of our proposed model to benchmark models. The experimental results showed that our proposed models outperformed the benchmark models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analyzing the Impact of Credit Ratings on Firm Performance and Stock Returns: Evidence from Taiwan

The respective study covers three aspects; factors determining credit rating, credit rating impact on performance of entities and the relation between stock returns and credit rating. The study focuses on the firms listed in Taiwan Stock Exchange (TSE) of Taiwan. The empirical analysis uses the data of 50 firms rated by Taiwan Ratings Corporation (TRC) for the period 2010-2015. Two estimation t...

متن کامل

Combining accounting data and a structural model for predicting credit ratings: Empirical evidence from European listed firms

Ratings issued by credit rating agencies (CRAs) play an important role in the global financial environment. Among other issues, past studies have explored the potential for predicting these ratings using a variety of explanatory factors and modeling approaches. This paper describes a multicriteria classification approach that combines accounting data with a structural default prediction model i...

متن کامل

The Effects of News Sentiment and Coverage on Credit Rating Analysis

Credit ratings convey credit risk information to participants in financial markets, including investors, issuers, intermediaries and regulators. This paper proposes an automatic text analysis system for financial news and analyzes the effects of news coverage and sentiment factors on credit ratings. Our experiment results show that firms with higher news coverage received worse ratings in the n...

متن کامل

Hybrid Recommender System Based on Variance Item Rating

K-nearest neighbors (KNN) based recommender systems (KRS) are among the most successful recent available recommender systems. These methods involve in predicting the rating of an item based on the mean of ratings given to similar items, with the similarity defined by considering the mean rating given to each item as its feature. This paper presents a KRS developed by combining the following app...

متن کامل

Are Credit Scoring Models Sensitive With Respect to Default Definitions? Evidence from the Austrian Market

In this paper models of default prediction conditional on financial statements of Austrian firms are presented. Apart from giving a discussion on the suggested 65 variables the issue of potential problems in developing rating models is raised and possible solutions are reviewed. A unique data set on credit risk analysis for the Austrian market is constructed and used to derive rating models for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013